
Detecting anomalous device loads during
exploratory testing of mobile applications

Danila Mikhaltsov
Ivannikov Institute for System Programming of the RAS

Moscow, Russia
dmikhaltsov@ispras.ru

ORCID: 0000-0001-6696-0643

Konstantin Sorokin
Ivannikov Institute for System Programming of the RAS

Moscow, Russia
ksorokin@ispras.ru

ORCID: 0000-0002-6861-3802

Abstract—Reputation and competitiveness of both mobile ap-
plications and mobile operating systems depend on their quality.
Developers are using various techniques to ensure high quality.
Recently, exploratory testing approaches have been gaining
significant attention in this context. However, these approaches
mostly do not consider one major non-functional requirement
that affects quality – performance issues. Performance issues,
such as sluggish UI or extensive battery consumption, are
tightly connected to inefficient use of device resources. Detecting
these issues is a non-trivial task. In this paper we present a
novel approach to detect anomalous device resource usage and
hence potential performance issues. Our approach is integrated
with exploratory testing framework and uses information about
previously executed test runs to build the expected resource usage
model. The underlying model represents resource usage data as a
multidimensional time series and is able to detect anomalous time
intervals. We integrate our approach with exploratory testing tool
for Android and empirically evaluate it on a set of real-world
applications with injected performance issues. Our results show
that suggested approach can be successfully applied to detect
anomalous device resource usage and potential performance
regressions.

Index Terms—Performance loss, Mobile applications, Anomaly
detection, Regression analysis, Performance regression, Android

I. INTRODUCTION

In the last decade mobile application market has seen fast
growth and now it is a key business segment for many
companies. For example, Android developed by Google is one
of the most popular mobile operating systems. It holds 75%
of the mobile application market and has more than 2.8 billion
active users. The users’ interaction with the mobile device is
performed via applications. Both modern mobile applications
and mobile operating systems are complex software products
that require significant resources for development, support and
quality assurance. Despite these efforts mobile software still
contains bugs and errors.

Various practices to find different types of errors, including
application testing methods, are used. Application testing is
often divided into functional and non-functional. The first type
of testing is used to verify correctness of the application and
compliance with functional requirements. The second one is
used for checking non-functional requirements. For example,
one can search for inefficient network utilization or UI layout

issues. These types of problems arise when an application has
performance bugs.

The value of finding such errors lies in the fact that
they greatly affect the end-user experience. Applications with
greater stability are more competitive, so correcting such errors
is extremely important for application developers. According
to studies [1], [2], performance bugs survive long in the system
and are more difficult to detect and fix compared to other bugs.

Recently, approaches to automatically test mobile applica-
tions via interacting with application UI are gaining significant
attention [3]–[6]. This type of testing is called GUI testing
or exploratory testing. The goals of such testing may vary
but most often GUI testing aims to find crashes or hangs by
exploring as many application states as possible in the limited
amount of time.

During exploratory testing of a mobile application, resource
usage data can be collected: CPU usage (per process and
overall), memory usage, power consumption, the number of
system calls, etc. Recently, anomaly detection on this data for
non-functional testing of applications has gained popularity
[7]–[9]. Resource usage data can be utilized to find anomalous
device loads, i.e. increased CPU usage or network usage, etc.
The anomalous device loads, in turn, may indicate presence
of performance bugs.

There are various tools for exploratory and dynamic testing
of Android applications, e.g. Android Studio profilers, Monkey
[10], DroidBot [3], etc. However, to the best of our knowledge,
there are no existing tools that try to detect anomalous resource
utilization (or performance issues) during exploratory testing
of mobile applications. This paper aims to mitigate this
shortcoming.

We propose an approach to detect anomalous device re-
source utilization by tracking history of exploratory testing
runs and using them to build the expected resource utilization
model. Thus, we consider this problem a part of regression
exploratory testing.

The paper is structured as follows. First, Section II provides
the necessary background with overview of related concepts.
Then, in Section III we describe our approach in details. It
contains an overview of testing pipeline, information about
resource usage data collecting and processing and in-depth
explanation of our anomaly detection approach. It is followed

https://orcid.org/0000-0001-6696-0643
https://orcid.org/0000-0002-6861-3802

by evaluation with experiments on real-world applications
(Section IV). Finally, sections V and VI contain a short
summary of related work and conclusion respectively.

II. BACKGROUND

This section contains a short summary of related concepts
and practices.

A. GUI testing

Automated GUI testing or exploratory testing approaches
try to simulate real user by interacting with mobile application
UI. The goals of such testing may vary but most often it aims
to find application crashes or hangs by exploring as many
application states as possible in the limited amount of time.
Numerous GUI testing approaches have been proposed by
scientific community [3]–[6]. They utilize different methods,
but the high-level workflow is mostly the same. Typically
there is a testing agent which interacts with a real mobile
device or with a mobile emulator. This agent sends actions to
the device, e.g. touch or scroll, and receives application state
updates if necessary, which may affect next action choice. This
is illustrated in the upper part of Figure 1.

Fig. 1: GUI testing high-level workflow

To start testing user provides an application and testing
(exploration) configuration, which includes things such as
test session time, exploration strategy (e.g. how actions are
selected), etc. The output of completed GUI testing session
defines a finished test (exploration) run.

B. Performance regressions

During software evolution some changes may result in
performance regressions. Performance regression can be de-
fined as a degradation of the analyzed system compared to
its previous versions. To detect such regressions, developers
conduct performance regression testing, which is based on
collection of resource usage data and performance metrics
during each test run. Resource usage data is generally rep-
resented as multidimensional time series, e.g. joint time series
of CPU usage, memory usage or storage utilization by target
application under test. This data is typically stored in a
dedicated database, which can be later queried for detailed
analysis.

Once new software version is available, one can execute the
available performance tests and compare newly collected data
with the history of previous test executions. If data for new

version deviates too much from the expected performance or
from previously observed behavior, a performance regression
is reported.

C. Time series anomalies

Time series anomaly detection problem is usually for-
mulated as identifying outlier data points relative to some
expected behavior. Because time series is a sequence of points
correlated in time, outliers can be divided into two types: point
outliers and sub-sequence outliers.

A point outlier can be visualized as an unexpected spike or
drop in time series. It is a point value in a sequence that looks
unusual at a specific time when compared either to the other
values in the time series (global outlier), or to its neighboring
points (local outlier). One can distinguish between univariate
and multivariate point outliers.

Sub-sequence outliers represent consecutive points in time
whose joint behavior is unusual. However, it does not mean
that each observation individually has necessarily to be a point
outlier. Sub-sequence outliers can also be global or local, and
univariate or multivariate.

Finally, the whole time series can be considered anomalous
(or an outlier) when compared to a set of other time series.
This can happen in cases when the target time series has:

• different length or time shift
• different distribution of values (but not necessarily differ-

ent time-series curve shape)
• different time-series curve shape (but not necessarily

different distribution of values)
In the context of performance testing we consider all

these types of anomalies important. For example, one can
observe occasional point or sub-sequence anomalies in CPU-
utilization, differences in curve shape of network traffic usage
or differences in distribution of memory residual set size
(RSS).

III. APPROACH

In this section, we describe our approach for detecting
abnormal loads on a device during GUI testing in detail. We
first present the overview of our approach and explain overall
pipeline. After that, we explain how resource usage data is
collected and post-processed, how we build an expected model
and how it is used to detect anomalies.

A. Overview

We combine regression testing (in particular performance
regression testing) with automated GUI testing for assessing
mobile application or mobile OS quality. Figure 2 contains
schematic diagram of the overall pipeline.

The regression testing system supports two complementary
scenarios. In the first scenario, testing is performed on subse-
quent versions (v1, v2 . . . , vn) of the same mobile application.
In the second scenario incremental mobile OS versions can
be evaluated on a set of predefined applications. There is no
difference in the overall pipeline for both these cases.

Fig. 2: Overall pipeline

Each time new version is uploaded to the regression testing
system, the application is run using an automated exploratory
testing tool. This is usually performed with a set of fixed con-
figurations C = (D,S, T, I), where D is device specification,
S is a testing strategy used to select actions, T is a desired
exploration time (e.g. 30 minutes) and I is interval between ac-
tions, e.g. in seconds. During each exploratory testing session
device resource usage data U = (u1,u2, . . . ,uk) is collected
using a dedicated component. Each ui is a time series (vector)
of usage values for particular resource (e.g. CPU or RSS).
Thus, U is a multivariate time series. The output of testing
session is an exploration run R = (C,U, F) which consists of
testing configuration C, resource utilization data U and a set
of detected failures F . This is depicted in the upper part of
the Figure 2.

In the bottom part, an analysis system is depicted. It is
responsible for aggregation of test runs and for performing
actual detection of anomalous device loads. For each new run
app version v′ and corresponding run R′, system constructs
a historical set of similar runs H = (Rn1

, Rn2
, . . . , Rnk

).
We consider two runs similar if their respective configurations
Ci and Cj are the same. Only runs that have successfully
passed the regression system tests, e.g. a set of detected
failures F is empty, are picked for historical set. H is used
to model expected behavior and to compare against it. More
regular testing allows to construct better historical sets and thus
to model expected resource usage behavior more accurately.

ts dur cpu end state thread.name
ts1 247188 2 S logd.klogd
261187012418183 12812 2 D traced probes0
261187012421099 220000 4 D kworker/u16:2
261187012430995 72396 2 D traced probes1
261187012454537 13958 0 D traced probes0
261187012460318 46354 3 S traced probes2
261187012468495 10625 0 R org.schabi.newpipe.HEAD
261187012479120 6459 0 D traced probes0
261187012485579 7760 0 R org.schabi.newpipe.HEAD
261187012493339 34896 0 D traced probes0

TABLE I: An example fragment on scheduler data

Nevertheless, we limit the size of H by picking only N latest
similar runs to adapt to application evolution. Once anomaly
is detected, it may indicate the presence of performance bugs
in the new version, hence it is reported to a user for review.

Below we describe resource usage data processing and
anomaly detection approach in a greater detail.

B. Collecting resource usage data

The collection of resource usage data takes place during
the automated exploratory testing of applications. In our study
we focused on Android mobile operating system. Because of
that to collect this data we utilize Perfetto [11] tool. We have
also considered other options. For example, implementation
based on standard Linux tools and using native profilers from
Android ecosystem. The first one requires implementation
from scratch, while the second one does not provide an API,
therefore cannot be used as a part of anomaly detection system.

Perfetto is a cross-platform tracing tool that appeared in
relatively new versions of Android (starting with Android
10). It offers a larger number of data sources compared to
deprecated predecessor tool Android Systrace and allows to
write arbitrarily long files with trace data. It supports collection
of different types of resource usage data, including scheduler
events, memory RSS, power consumption, etc. At the same
time it tries to affect the performance of the system under
test as little as possible by recording data in an optimized
binary format and by working directly on the device (without
intermediate layers, such as Android Debug Bridge).

Within the scope of this work, we have deliberately lim-
ited a set of possible resources we track. Collecting data
from all available sources at once can lead to a significant
overhead during testing and significantly increase storage
requirements. Thus, we keep CPU scheduler events from
linux.ftrace source, which allows one to extract fine-
grained CPU usage information, and memory RSS from
linux.process_stats source. We consider the remain-
ing sources as a part of future work.

The CPU scheduling events are post-processed in order
to get CPU usage time series from a collection of sched-
uler events. Two time series from the scheduling events
are extracted: overall CPU usage and CPU usage of target
application process. An example slice of scheduler events data
is presented in Table I.

According to this table, if we divide the entire data into
intervals of fixed length interval_duration, then we

can understand how much time a particular process was
executing during any given interval, and how much the pro-
cessor was loaded overall in this interval. To convert the
received data to a time series, we can split the segment
[min
ts∈table

ts, max
ts∈table

ts] for a certain number of intervals

Ii = [Istarti , Iendi] of length interval_duration and
calculate the sum of the durations of execution of processes
pj that falls within this interval.

After the specified post-processing two one-dimensional
series are obtained, which are further combined with memory
usage data (RSS) to obtain a three-dimensional time series.

In this paper interval_duration was set to 1 second
for granularity. This is, on the one hand, a fairly short period
of time to track changes in the intensity of resource usage
over time, on the other hand — long enough to avoid sharp
fluctuations in time series due to too severe partitioning.

C. Anomaly detection

To identify whether target exploration run R is anomalous,
we compute the distance between its resource usage time series
U and the expected model built on corresponding historical
data H . To model expected resource usage behavior we use
barycenters. Barycenter is a special aggregated representation
of a collection of time series, which is obtained by aver-
aging. Time-series averaging is not a straightforward task
because small misalignments can cause key features to be
lost. Barycenter is good at preserving these features [12]. This
specific approach is also useful, because it allows to capture
different types of time-series outliers mentioned in II-C, which
can be present in resource usage data.

To compare time series and to build a barycenter, it is
necessary to define how to calculate the distance between two
time series ti = (t1i , . . . , t

m
i) and tj = (t1j , . . . , t

m
j). The trivial

approach is to use the Euclidean distance:

∥ti − tj∥2 =

√∑m

k=1
(tki − tkj)

2

This method of calculating distances between time series
shows poor results because it does not take into account the
specifics of time series. In particular, the Euclidean metric is
unstable when one of the time series was shifted, stretched or
narrowed. For example, if we take time series that are mostly
the same, but slightly shifted in time, the Euclidean metric
will show a big difference. Among with the occasional minor
fluctuations, this pattern is common in resource usage time
series captured during automated exploratory testing.

Another distance metric for time series is the Dynamic Time
Warping metric (DTW, [13]), which lacks the aforementioned
drawbacks of Euclidean distance. In the available notation, the
distance between ti and tj is defined as follows:

∥ti − tj∥DTW = min
π

√ ∑
(x,y)∈π

(txi − tyj),

where π = [π0, . . . , πK] — is a path that satisfies the
following criteria:

Fig. 3: Example: Distances to barycenter distribution for
OmniNotes application

• π — is a set of index pairs πk = (x, y) of time series ti
and tj , respectively

• π0 = (0, 0), πK = (n− 1, n− 1)
• ∀k > 0 πk = (xk, yk) and πk−1 = (xk−1, yk−1) are

related as xk−1 ≤ xk ≤ xk−1 + 1 and yk−1 ≤ yk ≤
yk−1 + 1

Because of these properties we select DTW as our distance
measure between resource usage time series.

For barycenter (expected model) computation we utilize the
state of the art method called DTW Barycenter Averaging
(DBA) [12]. Following definitions in III-A, given target run
R′, we extract its resource usage U ′, exploration history H =
(Rn1

, . . . , Rnk
) and corresponding resource usage history in

the form of time series U(H) = {Un1
, . . . , Unk

}. For U(H)
we compute its barycenter B(H) using DBA. After obtaining
the barycenter, it is possible to calculate the distances between
it and each time series in history:

D(H) = {∥u−B(H)∥DTW, u ∈ U(H)}

For detecting whether target exploration run and its resource
usage is anomalous we use interquartile range (IQR) method.
We compute distance between target resource utilization and
barycenter: d = ∥U ′ −B(H)∥DTW. The interquartile range
method is based on the first and third quartiles of the set
D(H): Q1 and Q3 respectively. The interquartile distance can
be calculated as:

IQR = Q3 −Q1

We consider the time series U ′ to be anomalous if its
distance d to the barycenter B(H) is greater than Q3+ω ·IQR.
Here ω is the multiplier, typically known as the “whisker
length”, that allows to configure the magnitude of acceptable
deviation. ω is the hyperparameter and we have tested dif-
ferent values for it (see section IV). Figure 3 shows example
for OmniNotes application with boxplots of distances from
historical data to the historical data barycenter and a green
dot representing prediction for particular resource usage time
series.

Since the resource usage of each exploration run is a set of
three time series, we have to define when the multidimensional

time series is considered as anomaly. We consider resource
usage data anomalous when any of its one-dimensional time
series is considered anomalous by described method.

IV. EVALUATION

To implement our approach we used the automated ex-
ploratory testing tool for Android developed at Ivannikov
Institute for System Programming of the RAS. We considered
three different types of data for evaluation:

• data collected on applications with artificially embedded
performance bugs;

• data collected on normal applications, but modified in a
special way afterwards;

• data collected on open-source applications with known
performance bugs in the old versions.

They are described below in details.

A. Applications with artificially embedded performance bugs

The first set of applications consists of pairs A =
{(normali, buggyi)}, where the pair includes application ver-
sion that has performance issues and an application version
without them. To build such set, a self-created set of modified
open source applications is considered, where performance
problems have been artificially embedded.

We have selected OmniNotes, Forecastie and RedReader
open-source applications for this purpose [14]. The taxon-
omy of performance bugs created in [1] describes complex
redundant calculations as one of the most frequent causes of
performance issues in real-world applications. Hence, there is
a large load on the device’s resources, as a result of which
the user experience may become worse: target application or
UI may lag or become unresponsive until the end of such
redundant calculations. To simulate such problems, modified
versions of selected open-source applications were created,
in which calculations requiring noticeable processing were
injected. thus, this part of evaluation dataset allows to evaluate
detection of anomalies in CPU usage data.

B. Modified time series

This part of data set was obtained by running exploratory
testing on versions of applications without performance bugs
with further modification of obtained resource usage data. To
simulate real performance bugs related to memory usage, we
utilized the results of work [15], where authors analyzed the
nature of memory leaks, and adopted their memory utilization
classification into two patterns: linearly increasing pattern,
saw-tooth pattern (see Figure 4 for example). We have suc-
cessfully simulated these patterns by modifying the normal
resource usage time series for applications Booking.com, Ebay
and GnuCash.

C. Old application versions with known performance bugs

In [1] authors have collected a data set consisting of a list
of performance bugs in older versions of a set of mobile
applications for Android. We planned to utilize it and to
evaluate our method on these applications since they are the

Fig. 4: Example of synthesized anomalous time series

Application
name

Number of
normal time

series

Number of
anomalous
time series

Method of obtaining
anomalous time series

Booking.com 31 19
Modified time seriesEbay 31 19

GnuCash 31 19
OmniNotes 20 8 Artificially embedded

performance bugsForecastie 20 8
RedReader 20 8

TABLE II: Description of generated data set

closest to real-world examples of performance bugs. However,
we faced two major issues. First, there were problems with
building these versions of applications which were mainly
related to outdated dependencies or build systems. Second,
we were not able to easily reproduce specific performance
problems for a subset of successfully built applications using
exploratory testing in a reasonable amount of time. Because
of these reasons we had to give up using this specific dataset
in the scope of this paper. We are leaving the task of creating
a similar dataset for a set more modern Android applications
for the future work.

D. Evaluation methodology

In the end, our implementation helped us obtain a data
set which contains approximately 60 hours of exploratory
testing. For each application A ∈ (OmniNotes, Forecastie,
RedReader, Booking.com, Ebay) we have a set of time se-
ries TA = {tnormal1 , . . . , tnormalkA

, tanomalous1 , . . . , tanomalousmA
},

represented in table II. The historical subset of fixed size 12
was chosen randomly from the normal time series. Every other
time series from TA was treated as a target time series for
anomaly detection using selected historical set. It can be ob-
served experimentally that the metrics can change depending
on the choice of historical set, so we decided to calculate
metrics for 30 random historical sets and then average the
results. We also wanted to check the impact of ω (whisker
length) parameter on the result (see section III-C). The total
number of inputs for anomaly detection for every w is

∑
A

[
(kA+mA−hist_size) ·iterations ·pa

]
= 6300,

where hist_size = 12, iterations = 30 and pA
represents the number of 1-dimensional time series which can
be anomalous: pA = 1 for the first 3 apps from the table II
and pA = 1 for other 3 apps, since our resource usage data

TP TN FP FN Precision Recall F1-score
ω = 0.0 2500 1669 1481 650 0.628 0.794 0.701
ω = 0.5 2169 2094 1056 981 0.673 0.689 0.680
ω = 1.0 1979 2396 754 1171 0.724 0.628 0.672
ω = 1.5 1688 2550 600 1462 0.738 0.536 0.621

TABLE III: Evaluation results

types are CPU usage per target process, overall CPU usage
and memory usage per target process.

To obtain a quantitative assessment of the quality of
anomaly detection, the metrics Precision, Recall, F1-score
were calculated:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2 · Precision · Recall
Precision + Recall

E. Results and future work

The evaluation results are presented in table III. The values
of the first 4 columns represent the numbers of 1-dimensional
time series on which anomaly detection was performed. For
these applications, the 0.0 is the most optimal value for ω
with F1-score = 0.701. With an increase of the w parameter,
Recall decreases and Precision increases. We believe that
these metrics can be improved, e.g. by designing additional
predicates that will work with a specific resource usage type
and utilizing its specifics (e.g. some heuristics for memory
usage). Also, we consider localization of anomalous time
series intervals as a part of future work.

V. RELATED WORK

This section provides a short overview of existing ap-
proaches that are close to the topic of this paper. The
overview includes two research directions: identification of
non-functional bugs via dynamic testing and time-series data
anomaly detection.

Anomaly detection in multidimensional time series is a
popular research area. Many methods have been proposed for
different purposes including detection of anomalous resource
usage in cloud-based computer systems. In [16], [17], the task
of detecting anomalies in multidimensional time series in real-
time is set. Both of this papers use historical data, but they
are aimed at real-time anomaly detection, which is different
from our goal.

The work [18] describes anomaly detection in multidi-
mensional time series. Signature matrices are constructed for
different time series intervals, which are then used by a CNN
to find anomalous areas. However, the approach proposed
in this article is used to find anomalies within a single
multidimensional series without any historical data set, so this
method differs from ours.

The works [7], [8] describe resource usage data anomaly
detection methods. However, both of them use supervised
learning and do not imply any usage of historical data for
a particular resource usage time series.

Paper by Gomez et al. [19] describes an approach to
detect performance regressions which is similar to ours. This
approach also collects resource usage data and performance
metrics. Contrary to our approach with barycenters and DTW
it uses IQR method on distribution statistics and thus does not
consider time series specifics.

Another work by Jindal et al. [15] suggests a technique to
detect memory related issues and memory leaks in particular.
The detection is performed in the context of one run only and
does not consider changes in memory usage patterns between
different versions of software.

In the article [1], a classification of performance bugs was
carried out and their survivability (time taken to detect and fix)
was investigated. To find examples of such bugs, the authors
searched by keywords for open source versions of applications
in which performance bugs were fixed, and then manually
classified each fixed error. The authors of the work posted the
resulting data set of 500 versions of applications with classified
types of bugs.

As a result of a review of existing solutions, only one
data set suitable for the tasks of this work was found: the
authors of the article [1] provided a collected classification of
performance bugs in applications on iOS and Android, which
is a set of application versions (corresponding commits) in
which the bugs were fixed. We tried to use it during evaluation
in IV.

VI. CONCLUSION

In this paper, we’ve presented a novel approach to detect
anomalous device loads and hence potential performance
issues. Our approach is integrated with exploratory testing
framework and uses information about previously executed test
runs to build the expected resource usage model in the form
of time series barycenter with DTW as a distance metric. This
choice allows us to detect different types of time series anoma-
lies, including point outliers, sub-sequence outliers and time-
series outlier as a whole. We have integrated our approach with
exploratory testing tool for Android and empirically evaluated
it on a set of real-world applications with injected performance
issues. Our results show that the suggested approach can be
successfully applied to detect anomalous device resource usage
and potential performance regressions with F1-score equal to
0.701.

VII. ACKNOWLEDGMENT

We are grateful to Alexander Spiridonov, Mikhail Ermakov
and Georgiy Pankratenko for assistance with some of tool
developments and useful comments.

REFERENCES

[1] A. Mazuera-Rozo, C. Trubiani, M. Linares-Vásquez, and G. Bavota,
“Investigating types and survivability of performance bugs in mobile
apps,” Empirical Software Engineering, vol. 25, pp. 1–43, 05 2020.

[2] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing
performance bugs,” 05 2013, pp. 237–246.

[3] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
23–26.

[4] ——, “Humanoid: A deep learning-based approach to automated black-
box android app testing,” in 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), 2019, pp. 1070–1073.

[5] J. Eskonen, J. Kahles, and J. Reijonen, “Automating gui testing with
image-based deep reinforcement learning,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS), 2020, pp. 160–167.

[6] W. Guo, L. Shen, T. Su, X. Peng, and W. Xie, “Improving automated
gui exploration of android apps via static dependency analysis,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2020, pp. 557–568.

[7] V. Vladareanu, V. Voiculescu, V.-A. Grosu, L. Vladareanu, A.-M.
Travediu, H. Yan, H. Wang, and L. Ruse, “Detection of anomalous
behavior in modern smartphones using software sensor-based data,”
Sensors, vol. 20, 05 2020.

[8] L. Gheorghe, B. Marin, G. Gibson, L. Mogosanu, R. Deaconescu,
V. Voiculescu, and M. Carabas, “Smart malware detection on android,”
Security and Communication Networks, vol. 8, pp. n/a–n/a, 09 2015.

[9] X. Zhang, F. Meng, P. Chen, and J. Xu, “Taskinsight: A fine-grained
performance anomaly detection and problem locating system,” in 2016
IEEE 9th International Conference on Cloud Computing (CLOUD),
2016, pp. 917–920.

[10] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gener-
ation for android: Are we there yet?” 2015.

[11] “Perfetto - system profiling, app tracing and trace analysis,” https:
//perfetto.dev/.

[12] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognition, vol. 44, no. 3, pp. 678–693, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S003132031000453X

[13] S. Z. Li and A. Jain, Eds., Dynamic Time Warping (DTW).
Boston, MA: Springer US, 2009, pp. 231–231. [Online]. Available:
https://doi.org/10.1007/978-0-387-73003-5 768

[14] “pcqpcq/open-source-android-apps: Open-source android apps,” https://
github.com/pcqpcq/open-source-android-apps.

[15] A. Jindal, P. Staab, P. Kulkarni, J. Cardoso, M. Gerndt, and V. Podolskiy,
“Memory leak detection algorithms in the cloud-based infrastructure,”
06 2021.

[16] P. Filonov, F. Kitashov, and A. Lavrentyev, “Rnn-based early cyber-
attack detection for the tennessee eastman process,” 2017.

[17] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan, “Statistical techniques for online anomaly detection in data
centers,” in 12th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2011) and Workshops, 2011, pp. 385–392.

[18] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng,
J. Ni, B. Zong, H. Chen, and N. Chawla, “A deep neural network for
unsupervised anomaly detection and diagnosis in multivariate time series
data,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 1409–1416, 07 2019.

[19] M. Gomez, R. Rouvoy, B. Adams, and L. Seinturier, “Mining test
repositories for automatic detection of ui performance regressions in
android apps,” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), 2016, pp. 13–24.

https://perfetto.dev/
https://perfetto.dev/
https://www.sciencedirect.com/science/article/pii/S003132031000453X
https://doi.org/10.1007/978-0-387-73003-5_768
https://github.com/pcqpcq/open-source-android-apps
https://github.com/pcqpcq/open-source-android-apps

	Introduction
	Background
	GUI testing
	Performance regressions
	Time series anomalies

	Approach
	Overview
	Collecting resource usage data
	Anomaly detection

	Evaluation
	Applications with artificially embedded performance bugs
	Modified time series
	Old application versions with known performance bugs
	Evaluation methodology
	Results and future work

	Related work
	Conclusion
	Acknowledgment
	References

